Муниципальное автономное дошкольное образовательное учреждение детский сад № 526

ФЕСТИВАЛЬ «ИНЖЕНЕРНЫЙ ПРОЕКТ. ЮНЫЙ МАШИНОСТРОИТЕЛЬ»

Инженерная книга «Фрезерный станок»

Команда «Инженеры будущего»

Разработчики:

Зюмалина Гульнара Рагибовна, воспитатель воспитанники подготовительной к школе группы: Липатникова Екатерина, 6 лет; Тертычная Лада, 6 лет

Содержание

No	Название раздела / подраздела	№ страницы
1	Командный раздел «Давайте познакомимся»	3
1.1.	Название команды, девиз	3
1.2.	Организация, город	3
1.3.	Состав участников команды	4
2	Взаимодействие с социальными партнерами	5
3	Инженерный раздел	8
3.1.	Пояснительная записка	8
3.2.	Название станка и принцип его работы	10
3.3.	Исторические сведения	12
3.4.	Схема сборки модели станка	13
3.5.	Профессии людей, которые обслуживают станок	14
3.6.	Фотографии готовых изделий	15
3.7.	Фотографии деталей, изготавливаемых на станке	16
3.8.	Фотографии заготовки для изготовления деталей	17
3.9.	Эскизы заготовки или детали	18

1. Командный раздел «Давайте познакомимся»

1.1. Название команды «Инженеры будущего»

Эмблема команды:

Девиз: Будем с эпохой в ногу шагать, Нашу страну будем мы развивать!

1.2. Организация, город: Муниципальное автономное дошкольное образовательное учреждение детский сад № 526, город Екатеринбург

1.3. Состав участников команды:

Тертычная Лада, 6 лет

Липатникова Екатерина, 6 лет

Зюмалина Гульнара Рагибовна

2. Взаимодействие с социальными партнерами

Идея участия в проекте возникла после посещения Музея истории завода «Уралхиммаш» и знакомством с современным производством и профессиями заводчан. Научный сотрудник музея Лазукова Наталья Борисовна провела для детей виртуальную экскурсию по цехам завода, показала производство и действующие станки, продукцию, выпускаемую заводом.

Завод «Уралхиммаш» является градообразующим предприятием микрорайона Химмаш, поэтому родители многих воспитанников работают на заводе. Детей заинтересовала экскурсия и они решили побольше узнать об истории и современном развитии машиностроения, а также попробовать себя в роли инженеров, конструирующих станки для заводов.

Для того, чтобы посмотреть, как выглядит завод изнутри, мы по пропускам прошли через проходную.

Заглянули в самое сердце завода и посмотрели, как плавится металл в доменной печи.

Внимательно рассмотрели гидравлический молот и шиберную задвижку.

Нам очень хотелось увидеть настоящие станки и посмотреть на детали, которые вытачивают на станках рабочие. Но, к большому сожалению, в цех мы не попали. Чтобы ближе познакомиться с производством, мы посетили мастерские Екатеринбургского техникума химического машиностроения.

Интересную экскурсию для нас провел преподаватель техникума Ушков Николай Васильевич.

3. Инженерный раздел

3.1. Пояснительная записка

Мы живем в эпоху активной информатизации, компьютеризации и роботостроения. Этот процесс идет такими «семимильными шагами», что современное общество испытывает острую потребность в квалифицированных специалистах, обладающих высокими интеллектуальными возможностями. Поэтому столь важно, начиная уже с дошкольного возраста формировать и развивать техническую пытливость мышления, аналитический ум, а также качества личности, обозначенные федеральными государственными образовательными стандартами.

Эти задачи в нашем ДОУ решаются посредством организации для старших дошкольников занятий по робототехнике с использованием робототехнической платформы Lego Education WeDo 2,0, которая позволяет уже в этом возрасте знакомить детей с основами строения технических объектов. Через проектную деятельность ребята знакомятся с инженерными профессиями, техническими производствами, различными видами техники.

Игры с исследовательской и экспериментальной деятельностью, предоставляют возможность дошкольнику экспериментировать и созидать свой собственный мир.

Цель проекта: приобщение детей дошкольного возраста к техническому творчеству через работу над инженерным проектом «Юный машиностроитель».

Задачи:

- Расширить представления детей о профессиях: инженер-конструктор, токарь, фрезеровщик.
- Способствовать овладению необходимыми знаниями, умениями и навыками сборки моделей из робототехнических конструкторов **Lego Education WeDo 2,0**, овладению техникой чтения элементарных схем;
- Способствовать изучению детьми процесса передачи движения при помощи вала, шестерёнок, колёс, зубчатой передачи;
- Обучать основам программирования;
- Содействовать формированию умения составлять план действий и применять решения практических задач, осуществлять анализ и оценку проделанной работы;
- Воспитывать интерес к поисковой деятельности, стремление разрабатывать необычные варианты решения задач;
- Развивать нестандартное, инженерное мышление;

- Развивать мелкую моторику движений, координацию руки и глаза;
- Развивать умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы путем логических рассуждений;
- Способствовать развитию коммуникативной компетентности на основе организации совместной, продуктивной деятельности.
- Установить взаимодействие с родителями детей, участвующих в проекте;
- Привлечь к взаимодействию социальных партнеров микрорайона Химмаш, заинтересованных в реализации проекта.

Планируемые результаты:

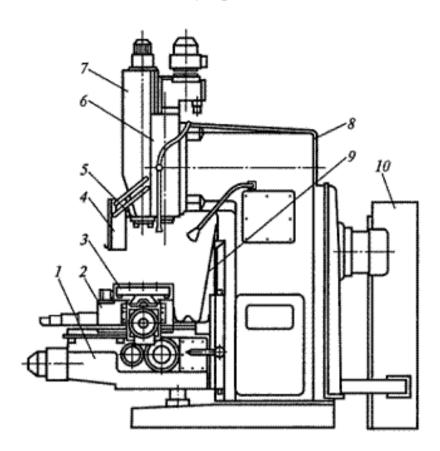
- ребенок овладевает робото-конструированием, проявляет инициативу в познавательно-исследовательской и технической деятельности;
- ребенок активно взаимодействует со сверстниками и взрослыми, участвует в совместном конструировании, техническом творчестве, имеет навыки работы с различными источниками информации;
- ребенок достаточно хорошо владеет устной речью, способен объяснить техническое решение, может использовать речь в ситуации творческотехнической и исследовательской деятельности;
- у ребенка развита крупная и мелкая моторика, он может контролировать свои движения и управлять ими при работе с конструктором;
- ребенок способен к волевым усилиям при решении технических задач, может следовать социальным нормам поведения и правилам в техническом соревновании, в отношениях со взрослыми и сверстниками;
- ребенок создает действующие модели на основе конструктора **Lego Education WeDo 2,0**, демонстрирует технические возможности конструктора;
- ребенок способен к принятию собственных творческо-технических решений, опираясь на свои знания и умения, самостоятельно создает свои авторские модели на основе конструктора **Lego Education WeDo 2,0.**

3.2. Название станка и принцип его работы

Фрезерный станок

Фрезерный станок применяется для обработки многих видов материала.

Фрезерный станок - станок для обработки резанием при помощи фрезы, наружных и внутренних плоских и фасонных поверхностей, пазов, уступов, поверхностей тел вращения, резьбы, зубьев зубчатых колёс.


Операция фрезерования подразумевает вращательное движение режущего инструмента, которое является главным, и поступательное перемещение заготовки или фрезерной головки, которое называется движением подачи.

Для своего проекта дети выбрали консольный вертикально-фрезерный станок и решили сконструировать модель станка из конструктора **Lego Education WeDo 2,0.** За основу взяли модель «Художник-2» и немного модифицировали ее, заменив карандаш фрезой.

Консольный вертикально-фрезерный станок

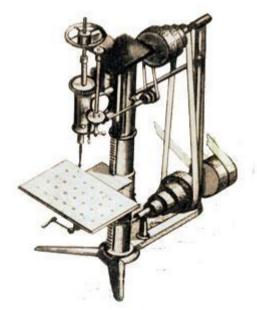
Вертикально-фрезерный станок с консолью является одним из самых распространенных. Такая популярность связана с тем, что, несмотря на довольно простую конструкцию, этот станок способен выполнять большинство наиболее востребованных фрезерных операций.

Схема устройства станка

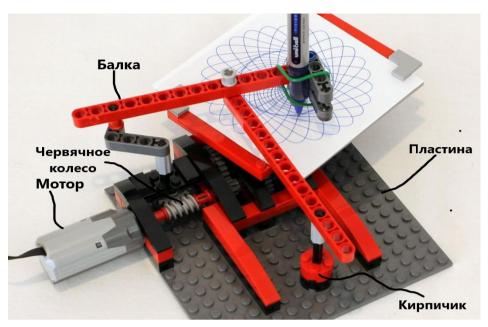
Станок состоит из следующих элементов:

- 1. Консоль. Сложный механизм, обеспечивающий подачу заготовки на вращающуюся фрезу с необходимым шагом и скоростью. В большинстве случаев имеет настройки на полуавтоматический режим обработки, что позволяет выбрать направление и скорость подачи, а также глубину внедрения фрезы в зависимости от частоты вращения шпинделя.
- 2. Салазки. Предназначены для перемещения стола.
- 3. Стол. Служит для закрепления обрабатываемой заготовки.
- 4. Защитный щиток. Предохраняет фрезеровщика от разлета стружки.
- 5. Шпиндель. Передает движение от привода станка на фрезу. Может регулироваться по высоте и углу наклона по отношению к обрабатываемой детали.
- 6. Фрезерная бабка. Содержит механизмы реверса и изменения скорости вращения шпинделя.
- 7. Ползун. Подвижная часть фрезерной головки. Осуществляет подачу фрезы в вертикальном направлении.
- 8. Станина. Основание станка, на котором размещаются все узлы и механизмы.
- 9. Кожух. Защищает узлы консоли от попадания стружки.
- 10. Шкаф. Служит для размещения электрооборудования.

3.3. Исторические сведения


Фрезерный станок - изобретение, изменившее мир! Человечество шло к нему долгие века и результат, конечно же, оказался впечатляющим.

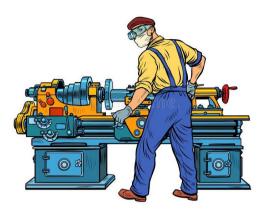
Первые, известные нам, описания принципа фрезерования появились в Европе в 16 веке. Леонардо да Винчи дал эскиз прототипа фрезы в виде вращающегося круглого напильника. В Китае был построен станок с вращающимся напильником. Прототипы современных фрезерных станков появились в 19 веке.


Изобретателем того, что можно назвать первым фрезерным станком считается Эли Уитни.

Металлический лист крепился на верстаке. Лекало накладывалось на лист сверху, и режущий инструмент двигался ПО Стол был очертаниям лекала. станка подвижен; привести его в движение можно было с помощью рычага. Грань каждого зубца режущего диска была слегка изогнута, заточена и закалена. При вращении колеса зубцы поочередно вступали в работу и каждый из них действовал как резец. Таким обводились очертания укрепленного на металлической заготовке.

С тех пор прошло много времени и лидерами в станкостроении считаются Китай, Япония, США и Германия. Наша команда «Инженеры будущего» хочет внести свой вклад в развитие станкостроения, чтобы Россия вошла в список мировых лидеров.

3.4. Схема сборки модели станка



Наша команда собрала модель фрезерного станка из конструктора ЛЕГО Ведо 2,0. За основу взяли модель «Художник-2» и немного модифицировали ее, заменив карандаш фрезой. Для сборки использовались: кирпичики, пластины, балки разной формы и размера, зубчатые колеса, червячное колесо, мотор, смартхаб. На ноутбуке мы записали программу, которая задает алгоритм движения стола и фрезы.

Модель станка, собранная участниками команды

3.5. Профессии людей, которые обслуживают станок

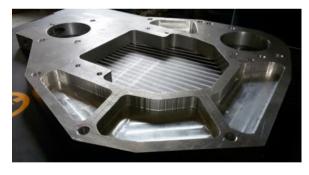
Фрезеровщик - это рабочий-специалист, который управляет фрезерным станком. Фрезерование представляет собой процесс обработки деталей и изделий по чертежам и в соответствии с технологической картой. Его применяют для придания поверхностям заданной формы (часто очень сложной). С помощью фрезы можно нарезать углубления и отверстия сложной конфигурации и размеров.

Оператор станков с числовым программным управлением— не просто рабочий. Это грамотный, опытный специалист, который обслуживает обрабатывающие станки с компьютерным управлением.

Наладчик станков с числовым программным управлением — сравнительно молодая, но пользующаяся высоким спросом на рынке труда профессия. Это человек, который отвечает за правильную установку последовательности при обработке деталей, наладку механизмов, а также выявляет нарушения в работе устройств.

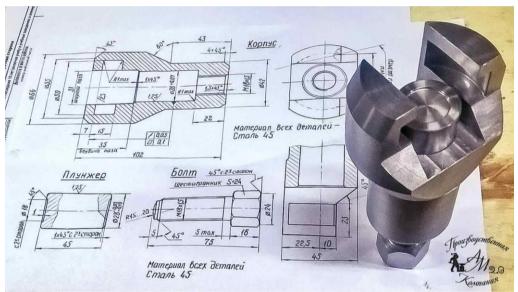
3.6. Фотографии готовых изделий

Фрезерная обработка изделий из дерева



Фрезерная обработка изделий из металла

Фрезерная обработка изделий из пластика



3.7. Фотографии деталей, изготавливаемых на станке

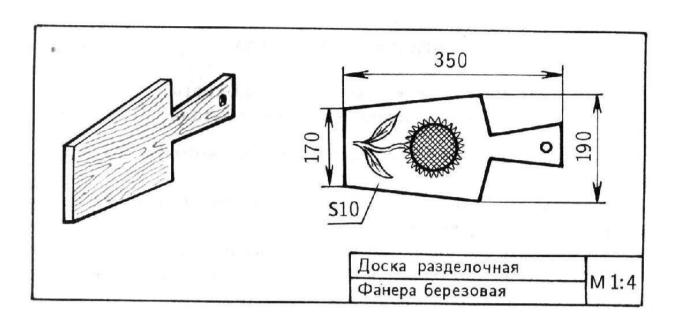
Детали из металла

Детали из дерева

3.8. Фотографии заготовки для изготовления деталей

Заготовка квадрат стальной Ст20 20 \times 20 \times 1000 мм

Заготовка круг стальной У8А 10×1000 мм



Заготовка плита алюминиевая Д16Т 12 \times 300 \times 1000 мм

Заготовка Фанера ФК 24х1525х1525.

3.9. Эскизы заготовки или детали

